A Simple LSTM model for Transition-based Dependency Parsing
نویسندگان
چکیده
We present a simple LSTM-based transition-based dependency parser. Our model is composed of a single LSTM hidden layer replacing the hidden layer in the usual feed-forward network architecture. We also propose a new initialization method that uses the pre-trained weights from a feed-forward neural network to initialize our LSTM-based model. We also show that using dropout on the input layer has a positive effect on performance. Our final parser achieves a 93.06% unlabeled and 91.01% labeled attachment score on the Penn Treebank. We additionally replace LSTMs with GRUs and Elman units in our model and explore the effectiveness of our initialization method on individual gates constituting all three types of RNN units.
منابع مشابه
An improved joint model: POS tagging and dependency parsing
Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...
متن کاملDependency Parsing with LSTMs: An Empirical Evaluation
We propose a transition-based dependency parser using Recurrent Neural Networks with Long Short-Term Memory (LSTM) units. This extends the feedforward neural network parser of Chen and Manning (2014) and enables modelling of entire sequences of shift/reduce transition decisions. On the Google Web Treebank, our LSTM parser is competitive with the best feedforward parser on overall accuracy and n...
متن کاملSimple and Accurate Dependency Parsing Using Bidirectional LSTM Feature Representations
We present a simple and effective scheme for dependency parsing which is based on bidirectional-LSTMs (BiLSTMs). Each sentence token is associated with a BiLSTM vector representing the token in its sentential context, and feature vectors are constructed by concatenating a few BiLSTM vectors. The BiLSTM is trained jointly with the parser objective, resulting in very effective feature extractors ...
متن کاملGraph-based Dependency Parsing with Bidirectional LSTM
In this paper, we propose a neural network model for graph-based dependency parsing which utilizes Bidirectional LSTM (BLSTM) to capture richer contextual information instead of using high-order factorization, and enable our model to use much fewer features than previous work. In addition, we propose an effective way to learn sentence segment embedding on sentence-level based on an extra forwar...
متن کاملNeural Joint Model for Transition-based Chinese Syntactic Analysis
We present neural network-based joint models for Chinese word segmentation, POS tagging and dependency parsing. Our models are the first neural approaches for fully joint Chinese analysis that is known to prevent the error propagation problem of pipeline models. Although word embeddings play a key role in dependency parsing, they cannot be applied directly to the joint task in the previous work...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1708.08959 شماره
صفحات -
تاریخ انتشار 2017